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We consider two definitions of entropy: thermodynamic entropy and signal 
entropy. We compare their value for the class of generalized Gaussian fields. 
The first definition is well adapted to monomode stationary fields, while the 
second one is bounded only for multimode fields. We prove that these two 
notions are definitely different, for example, the real Gaussian field has a 
maximum signal entropy and a minimum thermodynamic entropy (among 
the Gaussian fields). 

KEY W O R D S :  Thermodynamic and signal entropies; generalized Gaussian 
optical fields; density matrix describing monomode fields; temporal distribu- 
tion of random electrical field for multimode case. 

1. I N T R O D U C T I O N  

Ent ropy  is an i m p o r t a n t  no t ion  in physics  since i t  measures  the degree o f  
f o rma t ion  we can ob ta in  f rom a system. I f  en t ropy  grows, our  knowledge  
o f  the state o f  the system decreases. W e  can  also say tha t  i t  measures  the  
disorder .  

This pape r  is concerned with en t ropy  o f  opt ica l  e lec t romagnet ic  (em) 
fields. More  precisely,  we wan t  to  calculate  the  en t ropy  o f  general ized 
Gauss i an  fields which were in t roduced  recently.  (1,2) 

I t  is well known  tha t  en t ropy  is m i n i m u m  for  a system in a pure  state 
and  m a x i m u m  for a thermal  field. (31 W h a t  can we say abou t  o ther  fields ? 
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Different definitions of entropy are encountered in the literature, and 
we show that they are not identical. Let us recall briefly the two more common 
definitions of entropy: thermodynamic entropy and signal entropy. 

2. T W O  D E F I N I T I O N S  OF E N T R O P Y  

2.1. Thermodynamic Entropy 

For a quantum system defined by its density matrix t3 the entropy S is 
given by the following expression m) 

S = - -k  Tr{t3 log t~} (1) 

which is independent of the basis since it does not vary through any unitary 
transformation of basis vectors. 

For  example, a monomode stationary em field has a density matrix 
which is diagonal on the n photon states 

= }2 o ~  In><n I (2) 
n 

with Tr t~ = 2 P ~  = 1. 
It can be shown (a) that when we fix the mean number of photons 

(n)  = ~ np,~,  then (a) S = 0 for the field which has exactly n photons, 
and (b) S is maximum for the chaotic field (or stationary Gaussin field(~,2)), 
for which 

,,:,,., = < . ) " / ( 1  + <n))  '~+'- (3) 

If the mean number of photons (n)  is not determined, the maximum 
entropy is obtained for the system which is in each of its eigenstates with an 
equal probability(4~; this situation corresponds to maximum disorder. 

The quantum definition of entropy [Eq. (1)] is traced from the thermo- 
dynamic entropy of an ensemble of N particles in classical statistics 

S = - -k  f D log(/"2~D) d,.Q (4) 

where D = D(xl,. . . ,  x~ ;Pl ,...,Pn) is the probability distribution of n 
particles in the 6n-dimensional phase space, and /'2n is a positive quantity 
so that/~2,D is dimensionless. 

The two definitions appearing in Eqs. (1) and (4) are equivalent; this 
property was recently illustrated by the study of an infinite chain of oscillators. 
The classical problem was solved by Huerta and Robertson(a); they obtained 
the temporal evolution of the Liouville function reduced to N oscillators, 
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and they showed that a system of initially independent oscillators (which 
are not initially at thermal equilibrium since they are coupled) tends to 
thermal equilibrium when t -+ oo; the entropy becomes then maximum and 
the Liouville function factorizes. 

The same calculation was done quantum mechanically (8) from the density 
operator fi expressed in terms of operators } and ~ by using the Weyl rule 
which associated to fi a funct ion f W ( p ,  q) (Wigner function) which plays the 
same role as the classical Liouville function. The calculation proves that the 
system thermalizes, 

--+ e -H/lcr with H -~- ~' P i ~  m ~Q2 
�9 2rnf2 + --2-- qi'~ P ,-( 

2.2. Signal Entropy 

In communication theory, Shannon ~7,8) introduced another definition 
of entropy which is expressed formally as in Eq. (4) but where the indices 
1 .... , n refer to signal samples and not to particles. The distribution D we 
want to study then becomes the distribution p(x~ .... , x ,  ; y~ ,..., y , )  at times 
(q .... , t,~) of the random complex signal Z( t )  ~- x( t)  + iy(t). 

The signal entropy is defined after sampling the em field without any 
reference to oscillators. The Shannon entropy is thus defined as a measure 
of information by the relation 

H = lira (l/n) H~ 
n ~ o O  

(5) 
m~ = - -  ~ "" ~ p ( x l  ..... x ,  ; y l  ,..., y , )  

• log p(x  a .... , x,~ ; y~ .... , y~) ~ dxi dyi 
1 

Shannon showed (s) that among the real random functions (r.f.) which have 
a given set of moments (x(t~) x(t j)) ,  the r.f. that presents the greatest entropy 
is the Gaussian one. What can we affirm for a complex r.f. Z ( t ) =  
X(t )  + iY( t )?  First of all we show that entropy is maximum when X(t)  
and Y(t) are independent Gaussian r.f.'s (see Appendix A). 

When Z(t )  is the complex amplitude of an em field E+(t) [ = Z( t )  e i~ 
the independence of X(t )  and Y(t) is realized (a) for a monomode chaotic 
field, and (b) for a multimode nonchaotic field such that X(t)  and Y(t) are 
independent Gaussian r.f.'s; we shall this call it an "independent Gaussian 
field." 

We have to notice that Shannon's definition [Eq. (5)] depends on the 
units chosen. In communication theory this problem has no importance 
since we have generally to compare real (resp. complex) signals with real 
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(resp. complex) ones. But here we want to compare the entropy of a real 
r.f. with the entropy of a complex r.f., since the amplitude Z ( t )  of E+(t)  can 
be real or complex. Then, as in classical thermodynamics, we must introduce 
a constant/'~N such that the product 1"2up(x1 .... , x~v ; Yl  .... , y~v) is dimension- 
less. Moreover, the additivity of entropies of two independent systems 
necessitates a~ that if x and y are independent and have the same distri- 
bution, then F2N = ( I N )  ~, or 1"N = (1"1) N- 

Let us call "normalized signal entropy" the quantity 

/~ = (l/n) lim H~ 
(6) 

= - f . . .  f y)l d - , , .  d~y 

Let us choose/"1 such that H -- 0 for a real Gaussian (r.v.), i.e.,<" 

1" 1 = (2rreI) -1/2 (7) 

where I = (x2). In this paper we compare the normalized entropies for 
analytic signal amplitudes of generalized Gaussian fields. Because of our 
choice [Eq. (7)] and the property given in Appendix A, the maximum entropy 
is zero, so that all the entropies are negative quantities. 

We shall successively use the two previous definitions [Eqs. (1) and (6)] 
to compare the entropy for generalized Gaussian fields. 

3. T H E R M O D Y N A M I C  E N T R O P Y  F O R  
P S E U D O - G A U S S I A N  FIELDS 

The calculation of S[Eq. (1)] is very complicated for a nondiagonal 
density matrix, so that we shall try to reduce our comparison to diagonal 
matrices. Every quasistationary 2 em field E( t )  = Z ( t ) e  ~ot can be made 
stationary simply by introduction of a uniform phase r We obtain 

E,(t) = Z ( t )  e ~*+i~~ (8) 

which is fully stationary. (1,2) 
Of course if E( t )  is a Gaussian r.f.,/?(t) is no longer Gaussian [unless E( t )  

is chaotic]; we shall call/~(t) a pseudo-Gaussian field. Let us compare the 
entropy for generalized pseudo-Gaussian fields, using Eqs. (1) and (2); we 
have 

S[/~(t)] = - -k  ~ p , ,  log p,,~ (9) 

Quasistationary means that the moment (E(tz)E*(t~)} is a function of ( t2 -  tl) but 
(E(tz)E(t2)) is a function of tz, t.~. All the generalized Gaussian fields except the chaotic 
one are quasistationary. ~1,~) 
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Fig. 1. Thermodynamic entropy for monomode 
fields as a function of the mean number (n) of 
photons in the mode. Full line: chaotic field ze~'o ~. 
Broken line: real pseudo-Gaussian field xe~(~ ~+~'). 

where  the  m a t r i x  e l emen t s  pn~ are  f o r m a l l y  iden t ica l  to  c o u n t i n g  d i s t r ibu t ions  

o f  the  c o r r e s p o n d i n g  G a u s s i a n  fields 3 E( t )  since they  h a v e  the  s a m e  in tens i ty  

I ( t )  = I E(t)] 2 = I E(t)l ~. 
T h e  express ions  o f  e n t r o p y  fo r  the  chao t i c  field, the  real  p s e u d o - G a u s s i a n  

field E ( t ) -  x e  ~(~+~ a n d  the  genera l i zed  p s e u d o - G a u s s i a n  field (~,2) 

E( t )  == (x  § iy) e i(6+~o~) wi th  4 ( x  �9 y )  = p~r 2 are  as fo l lows:  

S (eh) = k ( ( n )  + 1) l o g ( @ )  + 1) - -  k ( n )  l o g ( n )  ( lOa) 

�89 a n s (~1) = - - k ~  ~ ['(n + ~F(n + �89 a n 
n [ l og  n ! (10b) 

~z 

See Ref. 1, Eqs. (5.10) and (4.7). There is mistake in Eq. (5.10), which must be replaced 
by 

oz 

p,~(T) = (1 -- p~)1/2 a~ ~ (n -? 2p)[ p~P 
(1 + a) "+z ~= n!p!p! (1 + a)~p 

where a = 2c,2T(1 -- p~), and p is the correlation coefficient of x and y. 
Notice that p = 0 corresponds to the monomode chaotic field and p = 1 to a field which 
has the same intensity as a real Gaussian field. 
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with a = 2 ( n ) / ( 2 ( n )  + 1) and a = [rr(2(n) + 1)]-1/2; and 

S (generalIzea) = --k ~ (1 -- p~)1/2 a~ ~ (n -[- 2p)! 
~=o (1 _E-~-+I ~ nlp~p~ 

p2~ 

(1 + a) ~ 

I a s ~ (n q- 2p)! p~O I 
• log (1 -- pu),/2 (1 + a)"+z~Z~=o -n.Tp.V-~! (1 +-a)  a~'} (lOc) 

where a has the same meaning as in the previous equation. 
These expressions can be computed; they are shown in Fig. 1 (entropy 

for a chaotic field and a real pseudo-Gaussian field as a function of (n)) and 
Fig. 2 [Eqs. (10a)-(10c) for generalized pseudo-Gaussian fields for (n) == 30, 
as a function of p]. 

In conclusion, for all the monomode stationary pseudo-Gaussian fields 
ze  il~ where z is a complex Gaussian random variable (r.v.) and ~ a 
uniform phase, the entropy is situated between two limits: The maximum is 
the entropy of the chaotic field (p = 0); the minimum is the entropy of the 
real pseudo-Gaussian field x e  ~C~ (or O = 1). 

The calculation of entropy for multimode Gaussian fields is rather 
complicated because of the correlation between modes, {2) except for the 
chaotic field, for which entropy is no more than the sum of the entropies 
for each mode. 

1.8 

1.7 

o o:8 i 7 

Fig. 2. Thermodynamic entropy for monomode 
pseudo-Gaussian field zei~% *+4'~ as a function of 
p = ( xy ) /%% for (n) = 30. 
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4. S I G N A L  E N T R O P Y  FOR GENERALIZED G A U S S l A N  FIELDS 

For any Gaussian r.f. Z ( t )  = x( t )  + iy(t),  the 2n-dimensional probability 
distribution can be written as ~ 

1 1 
U*A-1U) (11) p(x~ .... , x ,  ; y~ ,..., y , )  (2~r), I A I zt2 exp ( -  

where U is the 2n-dimensional vector (xz ,..., xn ; yz ,..., Yn) - -  ((-/1 ..... U2,) 
and A is the covariance matrix whose elements are Aij  = (U~Uj);  ! A  I is 
its determinant. 

There exists a unitary transformation S so that the vector U becomes 
V = (v~ ..... v2,); and the covariance matrix A becomes a diagonal matrix 
whose diagonal elements are its positive eigenvalues (A~ .... , A2,,). On this 
new basis, Eq. (11) becomes 

p(vi  ,..., v2,) = (2zr),(A z ..... A~,)~/2 exp -- ~ .= -~f ]  (12) 

Thus Shannon's entropy is 

which is 

Hn = - -  f "" f p(v) logp(v)dv  

= ,4- f " "  f p(v)llog[(27r)~[ A ] 1/2] q- ~ (vi2/,~i)l dv (13) 

Hn = log[(27re)n I A 11/~] (14) 

The normalized signal entropy [Eqs. (6) and (7)], related to H~ by the relation 

/1~ = H~ -- log(/~) ~n (15) 

is given for any Gaussian field [cf. Eq. (13)] by 

Er ---- lim log[[ A 11/2~/I] (16) 

where A is the 2n • 2n covariance matrix built o n  ( x  1 . . . . .  Xn ;Yn ," ' ,  Y , )  
and I = ( x i  2) -~ ( y f l ) .  

If' the variances of x and y are different, (x~ ~) = Ix and ( y i  2) = I, j ,  
Eq. (16) is still valid with I = ( I j v )  z/2. 

We must notice that the normalized signal entropy [Eq. (16)] is invariable 
through multiplication of each (x~, y~) by the same constant factor. 

Now let us compare /~  for different Gaussian fields. 

5 Mandel and Wolffl Eqs. (4) and (38). 

82z[8/4-4 
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4.1. Real Gaussian Field 

The matrix A reduces to an n • n matrix A~ built on (x~ ..... x,~) so 
that Eq. (12) must be replaced by 

. . . . .  = - F, W (17) p(vl v,) (27r)n/~[ A~ 11/~ exp '~ v/2 
i ~ l  i 

Shannon's entropy is then (7) 

H~ real ----- log[(27re)"/21 A~ I a/z] (18) 

and the normalized signal entropy is 

/~real} = lim �89 log(L A~ kl/"/I~) 
/l-~co 

(19) 

where I~ = (xi2). 
Notice that H in Eq. (19) is still invariant through the transformation 

I~ = (xr 2) ~ ~I~, since [ ~Ax I = ~ lAx t. Moreover, this quantity is 
negative since I A~ I1/~ < Ix for any positive-definite matrix A~. The previous 
inequality holds in a strict sense because A~ is not a diagonal matrix when 
X(t) has correlations, which is the case for any quasimonochromatic field 
we consider here. 

Let us call N~ = (1/Ix)A~ the "normalized" correlation matrix such 
that (x~ 2) = 1. The entropy [Eq. (19)] is then 

/~(reaz) = lira logI a~ [1/2, (20) 

4.2. Independent Gaussian Field [x(t) and y(t) are independent Gaussian 
r.f.'s] 

When x(t) and y(t) are independent r.f.'s, the distribution in Eq. (11) 
factorizes, and entropy is simply H(x) -}- H( y), where H(x) [resp. H(y)]  
correspond to x(t) [resp. y(t)] (see Section 2.2 and Appendix A); we thus have 

Hi~ naep = Hn(x) -}- H,~(y) = log[(27re)~[ AzAu j1/8] (21) 

D~naep = lira log[I A~4~ [1/~"/(1~I~)1/~] (22) 

where Ax and Au are the correlation matrices of x(t) and y(t). When X(t) 
and Y(t) have the same distribution, Eq. (22) can be simplified and we obtain 

Dindep ~_ 2/~real _ liln log] 6~ 1 it" (23) 

where 6gx = Ax/Ix as previously. 
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Notice that in Section 4.1 and here we compared two fields with different 
mean intensity [since for the real Gaussian field (I(t))  = I~ = (x2(t)), while 
for the independent one (I(t))  = Ix + I~]. But Eqs. (20) and (22) are both 
invariant by the transformation I~ --+ M~, so that Eq. (23) is valid whatever 
the mean intensity. In Eq. (23) we have F 6gx [ < 1, so that the normalized 
entropies of independent Gaussian fields are negative, too. 

The main conclusion of this section is that the real Gaussian field has a 
normalized entropy greater than the independent Gaussian field. 

This result seems to be contradictory with Appendix A, which states that 
the independent Gaussian field has a maximum Shannon entropy. As a 
matter of fact, Shannon compares two r.f.'s with the same a priori distri- 
butions p(x) and q(y).  

For our problem, with Shannon's definition, the signal entropy is given 
by 

H indep = lira log[(27re)l A~ ]l/n] 
n--> co 

(24) 
H real = lira log[(2 ~/~ee)I As [1/~n] 

So that 
H intlep - -  H real - -  �89 log[Tre I A~ ]1/,~]. 

This quantity can be positive as well as negative, according to the choice 
of units. 

The normalization [Eqs. (6) and (7)] only introduces the constant f'~,, 
which depends on the r.f. Z(t). This constant is absolutely necessary when 
we want to compare entropies for a real r.f. X(t) and a complex r.f. Z(t). 

4.3. Correlated Gaussian Field [x(t) and y(t) are correlated r.f.'s] 

A "correlated" Gaussian field has a matrix A ~  which is not zero. 
Shannon's entropy for such a signal is 

Hn e~ = log[(27re)"l A c~ 11/2] (25) 

where [ A  c~ [ is the determinant of the 2n • 2n covariant matrix. The 
normalized entropy for such a field is 

/Jeorrel = lnim log(] 6g e~ t 1/~n) (26) 

where 6g e~ = (1/I~) A e~ as previously. 
We can compare now the entropy for a correlated Gaussian field and 

an independent Gaussian field, using the result of Appendix A. We suppose 
they have the same determinants [ 6g~ I and I 6gu [; we consider a real Gaussian 
field of determinant r 6g~ i- We have 

/~correl < /~indep < I~rreal (27) 
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So that  6 

[ #{t c~176 < i ~ I ~ < I ~ I (28) 

Of  course, the chaotic  field is a par t icular  case of  the correlated Gauss ian  
fields, so tha t  the conclusions of  Section 4 are clearly distinct f rom those 
of  Section 3. 

5. C O N C L U S I O N  A N D  D I S C U S S I O N  

I t  is well known tha t  the chaotic field has m a x i m u m  the rmodynamic  
en t ropy  defined as Tr(p log p). We  have computed  the values of  en t ropy  for  
a m o n o m o d e  generalized pseudo-Gauss ian  field ze~C~o~+% where z is a 
Gauss ian  r.v. and q~ is a un i fo rm phase.  We proved  that  the m i n i m u m  en t ropy  
concerns the real Gauss ian  field xe i{~ 

The signal en t ropy  defined by Shannon  necessitates a slight modificat ion 
to be adequate  for  the study o f  em fields, i.e., we introduce a normal iza t ion  
additive constant  log f '~ so tha t  we can compare  signal entropies for  real and 
complex  signals. The  result is very different f rom the the rmodynamic  entropy,  
since the real Gauss ian  field has m a x i m u m  normal ized signal entropy.  We 
study independent  Gauss ian  fields Ix(t) and y(t) independent  r.f. 's) and 
correlated Gauss ian  fields [x(t) and y(t) correlated r.f. 's as is the case for  
the chaotic  field] and we prove  tha t  the chaotic field has a smaller en t ropy  
than  the independent  one. 

We  must  notice tha t  the signal en t ropy is not  adapted  to the study of  
m o n o c h r o m a t i c  fields. In  fact, for  any monoch roma t i c  field the correlat ion 
normal ized matr ix  ( (x  2) = ( y ~ )  = 1) is 

A = ( 
\ 

\ 
(1) p X ( 1 ) ~  

/ O • (1) (1) 

where (1) is the n • n matr ix  all of  whose elements are unity, and p = (xy) .  
F r o m  Eq. (26) we see tha t  the signal en t ropy of  a m o n o m o d e  Gauss ian  field 
is 

/~monomo0e = ~im log[(1 - -  p~)1/21(1)[1/~] 

But the de terminant  o f  the matr ix  (1) is null, so tha t  the signal en t ropy 
diverges for  a monoch roma t i c  field. 

6 Let us denote by B the n • n covariance matrix built on the complex r.v. (zz "", z~). 
We can use Eq. (28) to prove the following relation between the determinants of a chaotic 
field (see Appendix B): [ B [2 = ] A ] < I A~ [2. 
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A P P E N D I X  A 

Let us set 

H(x, y) = -- fp(x, y) logp(x, y) dx dy (A.1) 

where x = (xl ..... x~) and y = (yl  ,.-., Y~) are the values of X(t) and Y(t) 
at times q ,..., tn. 

H(x, y) can also be written, using a priori and conditional distributions, 

p(x, y) 
�9 ] dx dy H(x, y) = -- f p(x, y) log [ p(x) q(y) 

p(x) q(Y) 
(A.2) 

= H(x) + H(y) -- I(x, y) 

with 

I(x, y) : f p ( x ,  y) log p(x) q(y) dx dy (A.3) p(x, y) 

using the relation In a ~< a -- 1, we have 

I(x, y) ~< 0 Vx, y (A.4) 

In Eq. (A.4) the equality corresponds to the independence of x and y. Thus 

H(x, y) ~ H(x) + H(y) (A.5) 

The entropy of a complex r . f  less than the sum of the entropies of  its real and 
imaginary parts. 

Shannon established that H(x) is maximum for a real Gaussian r.f. 
X(t); thus the entropy H(x, y) is maximum i f  X(t) and Y(t) are two real, 
independent Gaussian r . f '  s. 

A P P E N D I X  B 

The probability distribution for a chaotic field can be written as Eq. (1 l) 
or 

p(zz ..... z• , zz*,..., z,*) -- [1/(2zr)nl B ]] exp(--�89 

Shannon's entropy is thus 

H~n eh) • log[(2zre) n] B 1] 

comparing with Eq. (25), we have 

I B ? =  rAl 

with B = 2A~ + 2iA~u. 

822/8/4-4* 



352 Martine  Rousseau 

R E F E R E N C E S  

1, B. Picinbono and M. Rousseau, Phys. Rev. A1:635 (1970). 
2. M. Rousseau, to be published; Doctorat Thesis, University of Paris, Orsay, 1972, 

unpublished. 
3, W. Louisell, Radation and Noise in Quantum Electronics, McGraw-Hill, New York 

(1964), Chapter 4. 
4. R. H. Pantell and H. E. Puthoff, Fundamentals of Quantum Electronics, Wiley, New 

York (1969), p. 18. 
5. M. A. Huerta and H. S. Robertson, J. Stat. Phys. 1:393 (1969). 
6. G. S. Agarwal, Phys. Rev. A3:828 (1971). 
7. C.E. Shannon, Proc. IRE 49:1079 (1949); C.E. Shannon and W. WEAVER, Mathematical 

Theory of Communication, University of Illinois Press (1949). 
8. C. E. Shannon, Bell System Tech. J. 27:379 (1948); 27:623 (1948). 
9. L. Mandel and E. Wolf, Rev. Mod. Phys. 37:231 (1965). 

10. J. Yvon, Les Corrdlations et l'Entropie en Mgcanique Statistique Classique, Dunod 
(1965), p. 83. 

11. L. D. Landau and E. M. Lifschitz, Statistical Physics, Pergamon Press (1959), 0. 25. 


